Weed Control

مكافحة الحشائش

أ.د. محمد زكي

مقدمة:

تعتبر الطرق الزراعية والإدارة المزرعية واتباع الدورات الزراعية المناسبة من أقدم الطرق التي اتبعتها ومازالت تتمتع لمكافحة الحشائش.

ويؤثر على نجاح هذه الطرق عدة عوامل طبيعية مثل الحشائش وقدرتها التنافسية وطبيعة نموها وحجم الإصابة ونظام الزراعة والأدوات المزرعية، والظروف الاقتصادية.... الخ.

والقاعدة العامة في أي برنامج لمكافحة الحشائش هو منع العدوى أو إدخال أنواع جديدة منها سواء كان ذلك على مستوى الجمهورية أو المزرعة وكذلك العمل على عدم انتشار الحشائش الموجودة فعلاً بالحد من انتقال بذورها أو أجزائها من مكان إلى مكان وبالرغم من أن منع Prevention ووجود الحشائش أفضل من مكافحتها إلا أنه لسوء الحظ فقد تثوّثت معظم الأراضي الزراعية بأعداد هائلة من الحشائش مما جعل منع وجودها أو إبادتها من الأمور الصعبة أو المستحيلة ويقصد بالإبادة هنا القضاء الكامل للحشائش النامية أو أجزائها أو بذورها في الحقل وهى عملية مكلفة بدرجة كبيرة. أما المنتج حاليا فهو اتباع طرق التحكم في Control أعداد الحشائش وتقليل أضرارها بدرجة اقتصادية بالنسبة للإنتاج.

وكم هو معروف فان الوقاية خير من العلاج وتلخص طرق الوقاية من الحشائش فيما يلي:
1- استعمال بذور المحاصيل النظيفة الخالية من بذور الحشائش عن طريق الحصول عليها من مصادر موثوق بها.

2- عدم تغذيه الحيوانات على بقايا الغربة والحربوب، أو الدريس المحتوى على بذور الحشائش بدون إتلافها حيويًا أو طحنها أو كمرًا.

3- عدم استعمال الأسمدة البلدية المخلوطة ببذور الحشائش قبل إتلاف حيوية البذور بتخمير السماد تمامًا كاملاً.

4- عدم السماح لحيوانات المزرعة الموجودة في المساحات الموبوءة بالحشائش من الانتقال مباشرة إلى المساحات النظيفة.

5- نظافة آلات الحصاد، آلات التدرينة، آلات كبس الدريس، عجلات الجرار، وآلات أخرى قبل انتقالها من المساحات الموبوءة بالحشائش.

6- تجنب استعمال حصى، رمل وترية من المساحات الموبوءة بالحشائش.

7- الفحص المستمر لمشاتل النباتات عن وجود بذور حشائش، ودرجات وريزومات الحشائش المميتة.

8- يجب منع الحشائش الموجودة في الحقل من إنتاج بذور باقته عليها باليد أو بالعريق وخلافه.

9- يجب أن تكون حواف قنوات الري خالية من الحشائش باستمرار.

10- منع انتقال بذور الحشائش عن طريق الرياح بقدر الإمكان. وتعتبر الوقاية أحسن الطرق لمكافحة الحشائش.
Methods of Weed Control

طرق مكافحة الحشائش

تنقسم طرق المكافحة إلى المجموعة الآتية:

أولاً: الطرق الميكانيكية: وهذه تشمل الاقطاع باليد والعزيق والحشر والحش والغلمر والحرق والتغطية. وهي إحدى طرق مكافحة الحشائش المباشرة.

ثانياً: الطرق الزراعية: وتشمل العمليات والنظم الزراعية التي تجري بقصد القضاء على الحشائش النامية في الحقول، وهذه الطرق غير مباشرة في مقاومة الحشائش، وتتضمن إتباع الدورات الزراعية المناسبة، وتưới الأرض، وإتباع طرق زراعية معينة وزراعة محاصيل منافسة.

ثالثاً: الطرق الحيوية: وتشمل استعمال الطفيليات والحشرات لمهاجمة الحشائش دون إصابة المحصول.

رابعاً: الطرق الكيميائية: باستخدام المواد الكيماوية لقتل أو تثبيط نمو الحشائش غير المرغوب في وجودها.

Mechanical Methods: الطرق الميكانيكية

أولاً: الاقطاع باليد

1- الاقطاع باليد

يعتبر اقتصاع نباتات الحشائش باليد طريقة عملية وفعالة في زراعات الصوب الزراعية، وداخل الجور والخطوط وفي معظم المحاصيل التي يصعب العزيق اليدوى أو بالألات للوصول إلى الحشائش القريبة من نباتات المحصول، وهي طريقة فعالة ضد الحشائش الحولية ذات الحولين لعدم تمكين هذه الحشائش من النمو ثانية لقطع الجذور المتورطة في التربة بعد الإقتصاع، بينما في حالة الحشائش
المعمرة تنمو السبقان الهوائية من أجزاء الجذور المتروكة بعد الاقتلاع باليد.
وعموما يجب تقليل الحشائش قبل الإزهار على الأكثر.

2- العزيق اليدوي
مازال العزيق اليدوي له اعتباره الخاص لأنه يعطي نتائج أكثر تأثيراً من أي طريقة أخرى، مازال يستخدم في مكافحة الحشائش في الحدائق وجميع المحاصيل التي تزرع على مسافات أو خطوط أو مصاطب والعزيق اليدوي ذو تأثير جيد ضد الحشائش الحولية وثنائية الحول ودرجة أقل ضد الحشائش المعمرة.
وتجري عملية العزيق بواسطة (الفأس) أو العزرات اليدوية أو الميكانيكية، التي تستخدم في حدائق الفاكهة حيث توجد مسافات كافية بين الأشجار لسير هذين الآلات وإذا استخدمت في محاصيل الحقول والخضروات تزرع هذه المحاصيل بطريقة تساعد على استخدام هذه العزرات.

3- الحرث
وهذه الطريقة ذات تأثير فعال على الحشائش الحولية والثنائية الحول والمعمرة على النموات سواء النامية فوق سطح التربة أو تحت سطح التربة عن طريق إيادتها أو تجوعها وعمل حرقة التربة وإثارتها على تقليل بذور الحشائش في التربة، والحرث السطحي يقضي على البادرات. أما الحرث العميق فيؤدي إلى دفن البذور على أعماق كبيرة وبالتالي تحليق البذور بجيوبيتها لسنين طويلة، ونتيجة لعمليات الفضالة المتذبذبة يؤدي إلى جلبها في الطبقات العليا للتربة وعامة يختلف تأثير عمليات الفضالة على الحشائش ببعا لأنواع الحشائش، وخصوصاً التربة ونسبة الرطوبة بها.

54
وقد أمكن مكافحة الحشائش المعمرة بهذه الطريقة لعدة سنوات، ففي حالة الحشائش المعمرة سطحية الجذور، كالنخيل، يكفي الحرق مرة واحدة لتعريض المجموع الجذري للجفاف ثم الحرق السطحي (الخربشة) لمنع تكوين أي نموات جديدة.

أما في حالة الحشائش المعمرة متعمقة الجذور كالعليق، فيجب الحرق لعدة مواسم وعلى فترات متقطعة والغرض من تكرار هذه العملية تجفيع النباتات باستهلاك مخزون الغذاء بالذكور.

الحش

4- تستخدم في مكافحة كل أنواع الحشائش النامية على جوانب الطرق، وفي الأماكن المهجرة والمسطحات الخضراء والمراعي وفي محاصيل العلف، ويؤدي الحش المتكرر إلى ضعف نموات الحشائش المعمرة نتيجة نقص الغذاء المخزون تدريجياً ثم استفادة نهائية وفي النهاية تموت الحشائش.

وبلجأ المزارع إلى حش الحشائش عندما تصبح كبيرة ويصعب عزفها، لمـأ كان أحسن وقت لمقاومة الحشائش وهي في طور الباردة، فإن أسبب وقت لمكافحة الحشائش الكبيرة وهو طور الأزهار حيث أن التبكر في مكافحة الحشائش خاصة المعمرة منها قبل الأزهار يؤدي إلى زيادة النموات السطحية ولكنه لا يمنعها من النمو ثانية، أما إذا تأخر الحش عن طور الأزهار وبعد أن تكون الحشائش قد كونت بذورها فإن الحش يقضي على الحشائش ولكنه لا يمنع النباتات من تكوين البذور التي تنثر وتتصبح مصدر المتاعب في العام التالي.
5- الحرارة أو الحرق

تقتل الحرارة الخلايا الحبيبة بتجليط البروتوبلازم، وتثبيط نشاط الأنزيمات، وتتراوح الدرجة القاتلة مابين 40-50°م. وتمتاز البذور للجافة بمقاومتها الشديدة للحرارة المرتفعة حتى إذا تعرضت لفترات طويلة وتجف أربع أعراض لاستعمال الحرارة في صورة لهب أو بخار في مكافحة الحشائش:

أ- تستعمل النيران لحرق المجمع الخضري للحشائش والتي تم نضجها أو التي قتلت بفعل الحش أو الرش بالمبيدات.

ب- مكافحة الحشائش النامية على جوانب الطرق والسكك الحديدية.

ج- يستعمل العزيق باللهب لقتل بادرات الحشائش النامية بين خطوط القطن دون مساس بالمحصول.

د- تستعمل الحرارة أحياناً في قتل بذور الحشائش المفرومة والأجزاء الأرضية للحشائش المعمرة.

وستستخدم عدة أنواع من الحرقات (أو قاذفات اللهب) والتي تستعمل وقوداً سائلاً أو غازياً، وقد تعمل هذه القاذفات إما باليد في المساحات الصغيرة وفيها يستعمل البنزين أو الكيروسين، أو تتعلق على الجرارات لقتل بادرات الحشائش النامية مع القطن أو البصل.

وأعمال اللهب طريقة إقتصادية وعملية لمكافحة الحشائش النوبة عريضة الأوراق والحشائش النجيلية النامية مع القطن، ويجب أن تكون نباتات القطن أكبر في الحجم من الحشائش حتى لا تضر وعادة يكون طولها حوالي 20 سم. وهذه الطريقة لا تستخدم في مصر.
6- الغمر بالماء

وتغذي هذه الطريقة في المحاصيل التي تنمو في بيئة مائية كالأرز حيث أن عملية الغمر بالماء تؤدي إلى خفض نسبة الأكسجين اللازمة للتنفس وبالتالي تخفيف إنبات كثيّري من الحشائش.

ومن المعروف أن بذور حبوب الأرز والأرض مغمورة بالماء يقلل من
انتشار حشيشة البذور في الوقت الذي ينمو فيه الأرز جيدًا لأن حبوب الأرز يمكنها استعمال الأكسجين الذوي يطرد عند تخمرها، هذا لأن بادرات الأرز لها القدرة على النمو تحت الماء باستخدام الأكسجين الناتج من عملية التمثيل الضوئي وينقل من الأوراق إلى الكنوز، ولذلك ينصح بغمور الأرز ونواته الصغيرة بالماء بعمق 10-15 سم لمدة 2-3 أسابيع بقصد الحد من إنتشار الحشائش التي لا يمكنها النمو والنباتات مغمورة بالماء. ومن المعروف أن بذور الحشائش المائية مثل البط والدلمية لاحتفظ بحيويتها مدة طويلة وتنافص نسبة أنباطها بزيادة طول فترة الغمر. ومن الملاحظات المعروفة أن المحاصيل الشتوية التي تزرع بعد الأرز تختلف بها نسبة الحشائش فالفول الذي يزرع بعد الأرز تختلف الحشائش به وخاصة الهالوك عن الفول الذي يزرع بعد ذره أو غيرها من المحاصيل الصيفية.

7- التنغطية

وتتضمن استعمال مواد التنغطية فوق سطح النوبة كالقش والدريس، والسماق والورق ورقائق البلاستيك، أو قش الأرز والغرس من استعمال الأغذية استبعاد الضوء ومنعه عن الحشائش فتموت. وفي حالة الحشائش المعمرة يجب أن يكون
سماك الأغطية كبيرة جداً لتقرتها على اختراق طبقة من الأغطية سمكها من 2 - 4 أقدم. ومن أمثلة هذه الحشائش النجيل وحشيشة الفرس.

ولقد استعمل الورق على نطاق واسع في مكافحة الحشائش في الخضر والاتنان والقصب وغيرها من المحاصيل، ولون الورق المستعمل في مقاومة هذه الحشائش أسود أو رمادي اللون وغير منفذ للماء ويختلف سمكه وعرضه حسب الطلب.

كما يكون الورق متقناً أو غير متقن، ومن فوائد استعمال هذه الطرقية في مكافحة الحشائش خفض تكاليف الخدمة والعزيز ورفع درجة حرارة التربة والمحافظة على رطوبتها وزيادة عملية التآزر والتبخير في نضج محاصيل الخضر خاصة في المناطق الباردة.

من عيب هذه الطرقية هو صعوبة تثبيت الورق على التربة كما تؤدي إلى زيادة الرطوبة تحت الغطاء وتهيئة الظروف المناسبة لبعض الآفات الأرضية.

ثانياً: الطرق الزراعية

1- استعمال دورة زراعية مناسبة:

تصاحب أنواع خاصة من الحشائش محاصيل معينة لأن هذه الحشائش ترتبط في نموها بوجود محصول معين حيث يلائم مباعد الزراعة وطريقة الزراعة انتشار هذه الحشائش فمثلاً ينتشر الدحريج والزمير والكبر في حقول القمح، كما تنتشر الدنياية والعجيرة في حقول الأرز، وتنتشر وتزداد هذه الأنواع من الحشائش إذا لم يزرع المزارع إلا محصول واحد باستمرار عاماً بعد عاماً، وتقل هذه الحشائش باتباع دورة زراعية مناسبة بحيث تتضمن الدورة تغيير الظروف البيئية من

58
محصول إلى آخر ولابد من أن تشمل الدورة محصولاً يزرع على خطوط حيث يمكن عرق هذا المحصول وآخر محصول علف كالبرسيم حيث يمكن حله على مرات.

٢- تبوير الأرض:

كثير ما يميل الزراعة إلى تبوير الأرض عندما يقل إنتاج وحدة المساحة نظرًا للكثافة إنتشار الحشائش، وفي هذه الحالة يقوم الزارع بحصر الأرض عدة مرات بغرف مقاومة الحشائش، وتعتبر هذه الطريقة في مكافحة الحشائش من الطرق المكلفة لأن الأرض في هذه الحالة ليس لها عائد اقتصادي نتيجة عدم زراعتها محاصيل رغمها ما يكلفها من نفقات في مكافحة الحشائش.

٣- طرق الزراعة:

تختلف طرق الزراعة من محصول إلى آخر ومن الممكن أن تختلف طريقة الزراعة لنفس المحصول فمن طرق الزراعة التي يمكن أن تقوم الحشائش معها بسهولة، ومنها ما يعيق المكافحة فطرق الزراعة على خطوط أو في سطور تساعد على مكافحة الحشائش ميكانيكياً، ولكن الزراعة البذور (الثيقية) تكون مكافحة الحشائش بها صعبة، وقد وجد أن زيادة معدل التقاوي لمحصول معين يساعد على مكافحة الحشائش، والمحاصيل التي تزرع في سطور أو على خطوط تؤدي إلى تسهيل إجراء عملية العزيق وطريقة زراعة الأرز بالشتل.

كما تؤدي Transplanting إلى تسهيل التخلص من الحشائش باستبداذا الحشائش أثناء إجراء عملية الشتل، ولذلك نجد أن الحشائش تكون قليلة في الأرز الشتل عن الأرز البذور، وتعتبر طريقة الزراعة الحرائز من الطرق المناسبة لمكافحة الحشائش في الأراضي الموجب بالالحشائش لأن الرية الكدابة تساعد على إنبات بذور الحشائش الموجودة.
وعندما تستنثر الأرض تحرث لزراعة المحصول ويتم بهذه الطريقة القضاء على الحشائش النابتة.

4- المحاصيل المنافسة:

المحاصيل المنافسة هي التي لها القدرة على النمو السريع وتغطي سطح التربة وتغلب على نموها نباتات الحشائش وينتج عن ذلك منافضة نباتات المحاصيل لنباتات الحشائش النامية معها في الحقل حيث تحجب الضوء عنها ولاتمكنها من استعمال الرطوبة الأرضية والمواد الغذائية بالرتبة وثاني اكسيد الكربون في الجو. فالدخن وحشيشة السودان والذرة الرفيعة والبرسيم وعبد الشمس والبرسيم الحجازي، والتبيل والقرطم تميز بنموها الخضري الكثيف أو نباتاتها أطول من نباتات الحشائش.

ثالثاً: الطرق الحيوية:

وهي تسعين الحشرات أو الفطريات في مهاجمة الحشائش والتغذى عليها ليس يتم القضاء عليها، وهي لاتقضي قضاء كاملًاً على الحشائش ولكن ندر من إنشارها. وأوجه الضرر في هذه الطريقة هو ارتفاع تكاليف هذه الآفات إلى أفة تسبب أضراراً للمحاصيل الاقتصادية وكذلك الكائنات النافعة.

ويعتمد استعمال المكافحة الحيوية للحشائش على أساسين:

1- نوع الحشيشة التي يمكن مكافحتها حيوياً.

2- استيراد الأعشاب الطبيعية للحشائش بشرط خلوها من الطفيليات التي تصيبها وتوقف الفرخ من استيرادها.

ولهذا يجب أن تكون الحشرة المستوردة متلائمة مع البيئة الجديدة التي تنمو فيها الحشيشة وأن تكون الحشرة على درجة كبيرة من التخصص تجعلها لا تتغذى إلا على الحشيشة التي استوردت من أجل مكافحتها.

60
من أمثلة طرق المكافحة الحيوية للحشائش:

1- أمكّن مكافحة نبات اللانتانا الشجري Lantana camara في جزر هاواي عن طريق تغذية بعض الحشرات المستوردة من المكسيك عليها وكان من Crocisodea lantana أكثر الحشرات فعالية برقات فراشة والتي ترتقي أعناق الزهور وتخوت النورات كما تتغذى على الأزهار والثمار.

2- أمكّن مكافحة الهاولوك في الاتحاد السوفييتي باستعمال الذبابة الصغيرة التي تتغذى على أزهار الهاولوك. وأيضا الفطر Fitomiza orobanche الذي ينمو على نبات الهاولوك.

3- أمكّن التخلص من نباتات من جنس النين الشوكي في مساحات كبيرة في استراليا عن طريق حشرة حشرة Cactoblastis cactorum الأرجنتين.

4- أمكّن مكافحة الحشائش المائية في كاليفورنيا باستخدام سمكة Tilapia zillii وفي مصر يستخدم سمك المبروك في مكافحة بعض حشائش الأرز عن طريق تربته في أنفاق في حقول الأرز.

5- يستخدم حاليا في مصر بعض الفيروسات في مكافحة ورد النيل في المجاري المائية والمصانع.

ويتمكن اعتبار الرعى الطبيعي بواسطة الحيوانات من طرق المكافحة الحيوية، فعن طريق الأبقار والأغنام والماعز والخيل التي تتغذى على الحشائش. وفي بيرو أمكّن مقاومة الجعاضي المغير عن طريق رعية بالغنم وفي نيوزيلندا أمكّن مقاومة العلائق بواسطة الماعز كما أمكّن مقاومة الخردل برعى الغنم في الشمال الغربي من الولايات المتحدة الأمريكية.
Chemical Control:

المكافحة الكيميائية للحشائش هي قطعًا بمواد كيميائية تسمى بمبيدات الحشرات Herbicides. وبدأت هذه الطريقة في نهاية القرن التاسع عشر باكتشاف بعض المواد الكيميائية، ولكن في الأربعينات من هذا القرن بدأ اكتشاف المبيدات، وفي السنوات الأخيرة زاد الاهتمام بها وسنتناول شرح مبيدات الحشائش فيما بعد.

المكافحة المتكاملة للحشائش

Weed Management

في المؤتمر الدولي الثامن الذي عقد في ألمانيا في يونيو 1933 ثم الاتفاق على استعمال مصطلح وتشتمل التسمية العربية لها تظل مكافحة الحشائش وأحياناً المكافحة المتكاملة للحشائش ويشمل هذا التعريف استعمال جميع Integrated Weed Management البديل لمكافحة الحشائش بما فيها المكافحة الكيميائية والتركيز على تحسين ظروف نمو المحاصيل والاهتمام بدراسة ودراسة الحشائش ودراسة حياتها ودراسة الضرر الذي تسببه وتحديد الحد الحرج لانتشار هذه الحشائش الذي يصبح معه التخلص منها ضرورة واجبة.

ولقد أدى الاهتمام بزيادة الانتاج الزراعي وخاصة في البلاد المتقدمة في العقود الأخيرة إلى زيادة استعمال مبيدات الحشائش بصورة واضحة فاقت استعماله للمبيدات البشرية والقطريين إلا أن حاكم الأولى الأخيرة نظرًا لاتجاه العالم إلى
التقليل من استعمال المبيدات بصفة عامة فقد انخفض عدد المبيدات التي تنتج سنويا نظراً لما تسببه من مشاكل أهمها:
1- ظاهرة المناعة أو المقاومة في العديد من الحشائش نتيجة استعمال المبيدات
2- ظهور بعض الحشائش التي كانت تعتبر ثانية كحشائش هامة وذلك بعد القضاء على أنواع معينة من الحشائش مما أتاح لمثل هذه الحشائش الانتشار بعد زوال منافسة الحشائش الأخرى لها وقد تكون مثل هذه الحشائش الثانوية أكثر مقاومة لتأثير المبيدات المستعملة مما يؤدي إلى تفاقم مشكلتها وذلك نتيجة طبيعية لاختلال التوازن الطبيعي نتيجة التدخل
3- التأثير السام لمثل هذه المبيدات على بعض الكائنات الأخرى مثل الأسماك أو الحيوانات البرية أو المفترسات وغيرها من الأعداء الطبيعية
4- الإضرار بالبيئة نتيجة لتوثال هذه المبيدات للماء والهواء والتربة وبقائهما في التربة فترة طويلة مما قد يسبب تلفا للمحاصيل التالية
5- أدى الاهتمام بضرورة تنفيذ اللوائح والتعليمات الخاصة بضرورة توفر المعلومات الكافية عن المبيدات قبل التعريضها، إلى الارتقاء بتكلفة إنتاج مثل هذه المبيدات ونتيجة لاستخدام التكنولوجيا الحديثة في هذا المجال يدفع تكلفتها للمستهلك بطريقة عادلة.

وعملية مكافحة الآفات في غاية التعقيد الآن فلم تصبح بالبساطة التي كانت بها وهي رش المبيدات قبل أو بعد ظهور الآفة بالحقل. وأصبح من الضروري الآن اتباع برامج لمكافحة تكون مبنية على دراسات مسبقة يتم فيها التنبؤ بمشاكل الحشائش مع استعمال كل الوسائل لمكافحتها مع عدم الإخلال بالتوالين

٦٣
الطبيعي حيث أن الحشائش تشكو جزءاً طبيعياً من البيئة الموجودة فيها والأخذ في الاعتبار إبقاء كثافتها تحت الحدود التي تسبب فيها الضرر للمحصول فليس الهدف هو إبادتها ولكن الهدف هو التحكم فيها عند المستوى الذي لا تسبب فيه خسائر اقتصادية وذلك بعد تقدير القد الإنتاجي الحرج للحشائش وكثافتها إلى أدنى مستوى للمحصول على أعلى عدد من المحصول، وكذلك تحديد الأعداد أو الكثافة المرجوة كما من الحشائش بدون التسبب في خسائر المحصول ومعرفة القدرة التناسية لكل من نباتات الحشائش ونباتات المحصول.

والذي سبق ذكر أن الحشائش من أكثر الأعشاب صعوبة في مكافحتها للأسباب التالية:

1- نباتات الحشائش والمحاصيل قريبة الشبه من بعضها كما أن الاحتياجات في النمو واحدة تقريباً.
2- تنتج الحشائش أعداد كبيرة من البذور.
3- قدرة الحشائش على مقاومة الظروف البيئية المغيرة أو المعاكسة بخلاف المحاصيل الاقتصادية.
4- الخاصية المميزة التي تتمتع بها الكثير من بنوز الحشائش وهي خاصية السكون، Dormancy أنواع الحشائش وانتشارها:

أن أول خطوة لمكافحة أي آفة هو معرفة هذه الآفة ودراسة دورة حياتها بطريقة تكاثرها وسلوكها في البيئة حيث يمكن التخطيط السليم لتطبيق طرق المكافحة لهذه الحشائش وهذه تشمل الخطوات التالية:

1- معرفة أنواع الحشائش وتوزيعها وانتشارها في الحقول والمحاصيل المختلفة ورصد البيانات الخاصة بالحشائش المنتشرة بصفة دورية في
المناطق المختلفة والتدريب الجيد للمسارعين والمرشدين الزراعيين للتعرف عليها وخاصة في أطرام حياتها المختلفة.

2- تحديد المناطق التي تنتشر بها الحشائش الممورة في الحقل للحد من انتشارها وكذلك تحديد أنواع الحشائش عند نضج المحصول لأن بذور مثل هذه الحشائش سوف تنتشر في الأرض وتبقى بها للموسم القادم.

3- المتابعة المستمرة لحالة انتشار الحشائش وخاصة في المحاصيل التي تمت بها عمليات خدمة التربة قبل الزراعة وتحديد هل سيؤدي الأعداد الموجودة من الحشائش في الفترة الأولى من حياة النبات (٣-٤ أسابيع) إلى إحداث أضرار بالمحصول أم لا حتى يمكن اتخاذ إجراء ما حيالها.

طرق المكافحة المتكاملة للحشائش:

وتشمل الدورة وزيادة قدرة النباتات (المحاصيل) التنافسية مع الحشائش واستعمال طرق المكافحة المختلفة.

1- الدورة الزراعية:

(أ) باتباع الدورة الزراعية السليمة يمكن مكافحة أنواع كثيرة من الحشائش طبقا للخبرة الزراعية المكتسبة سابقاً، وبوضع المحاصيل حسب مختلفة مع محاصيل محضر في دورة واحدة يمكن قطع دورة حياة أنواع كثيرة من الحشائش، فمن المعروف أن الذرة والبرسيم تنافس الحشائش بشدة في حين أن البصل والطماطم ضعيفة المناضة فإندماج مثل هذه المحاصيل في دورة واحدة تساعد في مكافحة الحشائش.
(ب) عدم استعمال نفس مبيد الحشائش لسنين متعاقبة لأن ذلك سيؤدي إلى زيادة أعداد الحشائش التي لا تكون تأثراً بما يؤدى إلى تراكم منتجات المبيد مما قد يؤدي إلى عدم صلاحيتها لزراعة أنواع أخرى من المحاصيل الحساسة.

2- ذيادة قدرة النباتات التنافسية:

سبق القول أنه ليس هناك بديل عن طرق الزراعة الجيدة فالنباتات القوية من أهم عوامل مكافحة الحشائش - حيث تساعد نباتات المحصول الاقتصادي على التغلب على منافسة الحشائش في فترة الأسابيع الأولى من حياتها حيث يمكن لمثل هذه النباتات تكون دورة حياتها بعد التغلب على منافسة الحشائش.

ومن العوامل التي تساعد على أعطاء نمو قوي للنباتات:

(أ) استعمال التقاوى المنتقى الجيدة الخالية من بذور الحشائش.
(ب) استعمال المعدلات الموصى بها من السماد.
(ج) خدمة الأرض والاعداد الجيد لهذه البذور.
(د) الزراعة في الميعاد المناسب لنمو المحصول.
(ه) التحكم في الري حسب الاحتياجات المناسبة للمحصول.
(و) مكافحة الآفات الأخرى مثل الحشرات والمرض والعناكب والقوارض.

3- استعمال طرق المكافحة المختلفة:

سواء كانت مكافحة الحشائش ميكانيكية أو كيماوية أو تكامل إجهاداً مع الآخرين، فمثلما في حالة الذرة فإن مشقات الترايزين من أنحى المبيدات إلا أن بعض أنواع الحشائش لا تكون تأثراً بهذه المبيدات فتكون بقوة نظراً لغياب المنافسة من الحشائش الأخرى وفي هذه الحالة يفضل إجراء عملية العزيف كعملية مكملة مع مراعاة عدم الإضرار بنباتات الذرة ويعود العزيف غير عميق.
وعند استعمال المبيدات في برنامج المكافحة تراعى النقاط الآتية:

(أ) نوع المحصول - نوع الحشائش - نوع التربة:

(ب) نوع الحشائش المراد مكافحتها سواء كانت حوالية أو معمرة واختيار المبيد الأولي لها نظراً لاختلاف حساسية أنواع الحشائش للمبيدات المختلفة كما يجب اتباع التوصيات الخاصة باستعمال المبيد من ناحية العدوى المستمدة والتوقيت المناسب.

(ج) نوع التربة: تختلف أنواع التربة من طينية إلى رملية وكذلك محتواها من المواد العضوية مما يؤثر تأثيراً كبيراً على معدلات المبيدات المستعملة وتاؤثر الحشائش المختلفة بها فالأرض الرملية تحتاج إلى معدل أقل مقارنة بالأراضي الطينية.

(د) يجب أخذ الظروف الجوية في الاعتبار حيث تتأثر فعالية المبيد بها.

(ه) يجب إجراء الدراسات عن تأثير الحشائش على أشجار الفاكهة في أعمارها الأولى مثل ما يحدث في العنب أو شتلات الفاكهة الأخرى - وماهو تأثير طرق المكافحة المختلفة على نمو هذه الأشجار بعد فترة تتراوح بين 2-5 سنوات وكذلك دراسة تكلفة هذه العمليات وأنواع الحشائش السائدة والتغييرات التي تطرأ عليها انتشار هذه الأنواع.
مبيدات الحشائش

تمهيد:

اكتسبت المواد الكيميائية التي تستعمل للقضاء على الحشائش أفقاً جديداً وأصبحت من وسائل الإنتاج التي لا يمكن الاستغناء عنها عندما تكون زيادة الإنتاج هي العامل المحدد في الزراعة الحديثة.

وتقيس المبيدات الكيميائية حسب تخصصها إلى:

مبيدات إختيارية، ومبيدات عامة، وهذه إ-même تعمل بالملامسة أو Contact. و هي تقلل من نتائجها.

وقد تقسم حسب فترة بقائها في التربة أو طبقة لمواعيد الرش، كما تختلف طرق إضافة أو رش المبيدات، وفي مجال وقائية النبات تلعب خاصية الاختيارية دوراً هاماً، إذا لم يكن المبيد اختيارياً في تأثيره فقد يؤدي إلى القضاء على الأفحة (الحشائش) وعلى المحمولة معاً. وفي هذه الحالة يكون مبيد عاماً (General) والتأثير الاختياري له علاقة بالخصائص الطبيعية للمادة أو خواصها الكيميائية وسلوكها داخل النبات أو في التربة كذلك الصورة التي يضاف بها هذا المبيد على النبات، كما يلعب الاختلاف المورفولوجي بين نباتات المحصول والحشائش دوراً هاماً في خاصية الاختيارية التي تختلف أيضاً باختلاف التحمل الفسيولوجي للنباتات واختلاف فترة النبات على تكسير المبيد وتحويله إلى صورة أخرى.

ويظهر التأثير السام لمبيدات الحشائش عن طريق تغيير نمو النبات بتشبيط العمليات الحيوية الأساسية أو منع تكوين المركبات الأساسية للنمو أو إحداث خلل فيه بمنع عملية التمثيل الضوئي الهامة أو إعاقة التنفس أو التأثير على إنبات البذور أو بأكثر من واحدة من هذه العمليات.

٦٨
مقدمة:

لا يقتصر علم وقاية النبات على استعمال الكيمياويات فمن المعروف أن الطرق الزراعية المختلفة التي سبق الكلام عنها لا يمكن التقليل من أهميتها بل أنها أكثر استعمالاً فليس هناك وعاء عن طريق الزراعة اليدوية فالمحاصيل ذات النمو الجيد تتنافس بشكل وطريقة أفضل مع الحشائش. وفي الوقت الذي مازالت فيه تستعمل الطرق التقليدية لمكافحة الحشائش فقد اكتسبت الكيمياويات بأفكاراً جديدة وقبولاً أكثر وأصبحت من وسائل الانتاج التي لا يمكن الاستغناء عنها عندما تكون زيادة الانتاج هي العامل المحدد في الزراعة الحديثة.

ولقد زاد استعمال الكيمياويات في مكافحة الحشائش في المناطق غير الزراعية مثل المناطق الصناعية - الطرق - المطارات - السكك الحديدية - المجرى المائي وغيرها من الاستعمالات يعد انتاج الزراعى وارتفاع معدل استعمال الكيمياويات في مكافحة الحشائش بصورة كبيرة خلال السنوات الأخيرة، وخاصة في الزراعات الشاسعة والانتاج الكبير ففي بعض البلدان وصل مبينفته المزارع الأمريكي مثل مبيدات الحشائش مثل ملينفته على الايام، وافق ما يستعمل من هذه الكيمياويات، ما يستعمل من المبيدات الحشرية والفطرية معا.

وقد بدأت قصة هذه المبيدات بالصدفة في عام 1895 عندما كان أحد المزارعون الفرنسيون بنقل محلل بوردو (سلفات النحاس) لمقاومة امراض البسج في الألب سقطت كمية من هذا المحلول على حشائش الخردل النامية في محصول الشوفان، فلاحظ موت هذه الحشائش دون الضرر بمحصول الحبوب، وبعدها ذلك بحوالي 16 عاماً تمت نجاح حامض الكبريتيك المخفف لهذا الغرض، ثم اهتم كثير من المزارعين باستعمال اى نوع من الكيمياويات المؤقتة في المخازن
لمكافحة الحشائش مثل زرنيخيت الصوديوم - الإسمدة، بانواعها امللاح البوراكس والكلورات Borax وهي كلها امللاح غير عضوية.
وأول استعمال لمركب عضوي لهذا الغرض كان عام 1923 في فرنسا والتي يتعلما المزارعون لكسر طور السكون في اشجار الحلويات حيث أظهرت هذه المادة فعالية واضحة ضد الحشائش عريضة الأوراق في محاصيل الحبوب وتلى ذلك استعمال باقي أنواع النيتروفينولات.
وفي أواخر الثلاثينيات جاء الاكتشاف الهائل لمركب MCPA, 2,4-D عندمأ كانت الأبحاث تجري في المعامل لانتاج مركبات شبيهة بالهرمون النباتي الطبيعي Indole acetic acid (أندول استيك أسيدي) IAA وجد أن كثيرا من هذه المركبات لها القدرة على تنظيم وتعديل نمو النباتات عند اضافتها بتركيزات منخفضة جدا وثبت أن لها استعمالات عملية كثيرة مثل تنشيط نمو الجذور في العقل وعقد النبات في غياب التلقيح ومنع تساقط الثمار وكذلك وجد أن مركب الـ (2,4-D) وهو شديد الشبيه في تركيبه الكيميائي لمركب IAA إلا أنه يختلف عنه في تأثيره داخل النبات فعند رش تركيزات عالية نسبيا على النباتات الحساسة (طماطم مثلا) يحدث تأثير ظاهر والنمو النباتي وموت النباتات التي رشت بالـ (2,4-D) (هرمون صناعي). أما النباتات التي رشتها IAA (هرمون طبيعي) فتستعيد حيويتها وتعود إلى طبيعتها وحالاتها الأولى.
وتاريخ الحقيقي لاكتشاف مادة MCPA, 2,4-D غامض نظراً لانتاجهما خلال ظروف الحرب العالمية الثانية ولم يعلن عنهما إلا بعد انتهائها وانشتر بعد ذلك استعمال هذه المبيدات الهرمونية ولا زالت تستخدم على نطاق واسع في محاصيل الحبوب سنويا وهي أكثر المبيدات التي استعملت على الإطلاق.
ومن التواريخ الواضحة بعد ذلك اكتشاف التأثير الفعال لمبيدات الحشائش التي ترش على النباتات. قبّل عام 1950، وثّق ذلك ظهور مشتقات اليوريا والترترزين وغيرها من المركبات الكيميائية والدالابون في TCA الحمضيات لمكافحة الحشائش ذات الفلقة الواحدة ثم ظهرت بعد ذلك في حوالي الخمسينات لمكافحة الحشائش ذات الفلقة الواحدة ثم ظهرت بعد ذلك في حوالي Contant المبيدات التي تعمل بالملامسة للمجموع الخضري مع عدم إظهارها لأي تأثير خارج النباتة نظرًا لاعتمادها على حبيباتها (مركبات الدايريديفيليم Dipyridylum) أو عدم بقائها لفترة طويلة مثل الجليفوساط Glyphosate في 1971.

وكان الفترة من 1955 - 1971 هي العصر الذهبى لإنتاج مبيدات الحشائش حيث أُنتج عنها ووصل إلى أكثر من 200 مركب في العام الواحد. وبعد ذلك اتخذت في الانتشار نتيجة التقدم المتسارع بخصوص تسجيل المبيدات وتداعيتها.

Classification of Herbicides

تعريف:

مبيدات الحشائش هي أي مركب كيماوي عضوي أو غير عضوي يستخدم لقتل أو تثبيط نمو نباتات الحشائش التي تتم معاملتها به.

أولاً : تقسم مبيدات الحشائش حسب تخصيصها:

1- المبيدات العامة أو الكلية أو غير النقادة وهي التي تقتل كل النباتات في المنطقة المعاملة بدون تمييز وتقتل كل ما هو أخضر. وتستعمل في الأراضي بجوار السكك الحديدية والطرق وغيرها.

71
ومن أمثلتها أملاح الكالورات والزرنيخات وهي ترش على المجموع الخضري للحشائش وبعض مركبات النتراتور والفيورسيا والتي ترش على النباتات حيث تنتشر خلال الجذور. وترش عادة بتركيزات عالية وفي مجال الزراعة فإن مبيدات هذه المجموعة قليلة الأهمية وتستخدم لمكافحة الحشائش المعمرة مثل النجيل والسعد والبطاطس النامية في حدائق الفاكهة باستخدام الرش الموجه.

Directed Spray

: Selective

2- المبيدات الاختيارية أو الاختيارية أو النقالة

وهي التي تقتل الحشائش وتترك نباتات المحصول بدون ضرار ويلاحظ أن النباتات تختلف في حساسيتها أو استجابتها للتآثر بأي نوع من الكيماويات، وبناء عليه يوقف اختيار المبيد وتركيزه وطريقة استعماله على نوع النباتات المطلوبة القضاء عليه.

وكثر من المبيدات غير المتانة عند استخدامها بتركيزات منخفضة جداً فإنها تصبح ذات تأثير اختياري. كما أن بعض المبيدات الاختيارية عند استعمالها بجرعات منخفضة تعطي تأثير هرموني مثل مركبات مجموعة الفينوكس.

ومن المعروف أن المبيد لايفير من خصائصه ولكن الاختلاف يكون نتيجة لاستعماله.
ثانياً: تقسيم المبيدات حسب طبيعة تأثيرها

(a) مبيدات باللامسية

وهي ترش على المجموع الخضرى وتقضي عليه كما هو الحال في عملية العزيق العادية فهذه الكيماويات تعمل كأنها عزف كيماوية وفي هذه الحالة يجب التغطية الكاملة للمجموع الخضرى للحشائش بحلول الرش ومن أمثلة هذه المبيدات الجرامكسون

(b) مبيدات انتقالية

وتنقل هذه المبيدات خلال المجموع الخضرى وترتكم وتؤثر في مناطق النباتات الحساسة وترش هذه المبيدات إما على المجموع الخضرى أو تضاف إلى التربة والأخيرة قد تكون طويلة المكثّة في التربة ولها القدرة على مقاومة الظروف المحيطة.

ثالثاً: تقسيم المبيدات حسب مدة مكثّتها بالتربة

وقسم إلى مبيدات:

1- ذات أثر باقي طويل في التربة Residual مثل مركبات الجرايلبين والبوراسيل.

2- مبيدات ليس لها فترة بقاء كبيرة في التربة Non Residual حيث تقضي فعاليتها عند ملامستها للتربة أو بعد فترة وجيزة مثل الجرامكسون والجيلفسات.

Time of application

توقيت رش مبيدات الحشائش

ترش مبيدات الحشائش سواء المبيدات العامة أو الاختيارية أما على المجموع الخضرى (باللامسية أو انتقالية) للحشائش أو على النترية التي تثبت فيها هذه الحشائش. وتوجد 3 مواعيد رئيسية لإضافة المبيدات هي:

73
Post-emergence

1- معاملة بعد الانباتات

عند رش المبيدات الاختيارية لتقتل نباتات الحشائش بعد انباتاتنباتات
المحصول تمثل معاملة بعد الانباتات مثل رش حشائش القمح ومن مميزات هذه
الطريقة :

1- لها تأثير سيكولوجي أو نفسي طيب على المزارع حيث يرى الحشائش بنفسه
قبل وبعد أن يتم القضاء عليها.

2- نظراً لأن مثل هذه المبيدات ترش على المجموع الخضري للنباتات فإن احتمال
وجود أثر باقى بالتربة ضعيف.

3- يستعمل حجم صغير من محلول الرش .

وعند استعمال معاملة بعد الانباتات تصير مهاجمة الحشائش وهي صغيرة السن ليس
فقط لاستعمال كمية أقل من المبيد ولكن الحشائش تكون في هذا العمر أكثر
حساسية لعمل المبيد . كما أن الرش في هذا الطور المكروه يسبب أضراراً أقل
 لنباتات المحصول من الآتى الرش كما أن التخلص من الحشائش في هذا التوقيت
يتبع للمحصول أن ينمو بعيداً عن المناقة من البداية . وتستعمل في الحالات
التالية :

(أ) بالملامسة للمجموع الخضري ، على أساس اختلاف درجة البلل (مثل مركب
في محاصيل الحبوب) أو تحمل النباتات لتأثير المبيد (الجرامكسون في
DNOC المحاصيل التي تزرع على خطوط).

(ب) رشا على المجموع الخضري (انتقالية) ، وتكون الاختيارية فيها نتيجة
لاختلاف البلل مثل D-4 ، في محاصيل الحبوب أو بالرش الموجه على
نباتات معينة (مثل الجلفيسات الموجهة).

(ج) رشًا على التربة ولها أثر باقى وترش على التربة بعد انباتات المحصول
وبجانبه مثل رش التريفلان بجانب نباتات الطماطم .
تعتبر المعاملات التربية بالمبيدات قبل الانتاج Pre-emergence من أهم العمليات التي يتم فيها استخدام المبيدات لمنع نمو الأعشاب الضارة والنباتات العشوائية. ينتمي هذا النوع من المعاملات إلى مجموعة تتميز بما يلي:

1. يتم الهروب من منافسة الحشائش لنباتات المحصول مبكراً.
2. يبقى تأثير المبيد في النبوءة لفترة طويلة للتأثير على الحشائش.
3. يمكن للمزارع إضافة هذه المبيدات مع السماد مما ينيرب عليه توفير في النفقات وتعمل في الحالات التالية:

(أ) معاملة قبل الانتاج (بالملاحة)، للقضاء على الحشائش النامية قبل انتابات المحصول وبها أن تكون لها أثر ناقي في النبوءة. (مثل الجرايموسون) وعيب هذه الطريقة أن الحشائش لانتبته دفعة واحدة فما نسب منها بعد عملية الرش يستمر في النمو. يمكن استعمال هذه الطريقة مع المحاصيل التي تأخذ وقتاً طويلاً في إزابتها مثل البصل وبنجر السكر.

(ب) معاملة قبل الانتاج (إنتقالية) حيث تضاف إلى النبواء مما قد يسبب أضراراً لنباتات المحاصيل الحساسة تستعمل في حالة مثل البطاطس التي يمكن معها استعمال مركب الداالايون والجرايموسون.

ويستعمل هذه الطريقة عادة في مصر في زراعة القطن باستخدام الكوتوران (فلوميتران). حيث تقلد الأرض جيداً ثم تشق وتتفرع الأرض نبئاوي القطن على الريشة القبلية ثم يرش مبيد الكوتوران بالمعدل 4/1 كيلوجرام مذابة في 200 لتر ماء ويكون ذلك قبل الري مباشرة.

كما يستعمل مبيد الجيسابريم (المادة الفعالة الاترازين) لمقاومة الحشائش في محصول القطن قبل الري مباشرة، ولا ينصح بالرش بعد الري حتى يتمكن العمال من السير في الحقل.

75
3- معاملة قبل الزراعة

وشمل إضافة مبيدات الحشائش على الأرض قبل زراعة بذور المحصول للقضاء على الحشائش الموجودة والتخلص منها ونظافة الأرض قبل زراعة المحصول، وكذلك المبيدات التي تضاف للتربة قبل عملية البدار أو عملية الشتل على العمق المناسب يجب خلطها وتقليبها في التربة جيداً وتستعمل في الأحوال التالية:

(أ) معاملة قبل الزراعة (بالملامسة للمجموع الخضرى) وتستعمل للقضاء على الحشائش الحولية والتي تنبت فعلاً بغض نظافة الأرض من الحشائش قبل عملية الزراعة. مثل هذه المبيدات يجب ان يكون لها أثر باقي في التربة مثل الجرامكسون الذي يمكن استعماله بدلاً من إثارة التربة بعد خدمتها.

(ب) قبل الزراعة (انتقالية) لمكافحة الحشائش المعمرة في الأرض قبل زراعتها ومن أمثلتها الدالابون للحشائش ذات الفلقة الواحدة 2-D.

(ج) قبل الزراعة على التربة ويبعد ألا تمكث في التربة لمدة طويلة مثل بروميد الميثيل (أو ينتهي مفعولاً قبل الزراعة مثل الابنام EPTC) الذي يجب تقليله في التربة لتقلييل تطويره أو تأكسده بسرعة كما في حالة الترفлан.

Methods of Herbicide Application

طرق إضافة المبيدات

1- التغطية الشاملة

تغطية جميع أجزاء المساحة الحقلية المعاملة بالمبيد بتجانس لمقاومة الحشائش النامية.
 Directed Spray

2- الرش الموجه

يستخدم في المحاصيل الطويلة المزروعة على خطوط بتجهيز رش المبيد

للحشائش النامية دون معاملة نباتات المحصول باستخدام البشورى الموجه بين

الخطوط.

Spot treatment

3- معاملة بقع معينة

وفيها يوجه رش المبيد إلى مساحات صغيرة أو بقع في الأرض التي تنشر

فيها الحشائش بكثافة عالية.

Band treatment

4- معاملة الشريط

عند ارتفاع ثمن المبيد بقتصر استعماله على المناطق فوق خطوط الزراعة

على هيئة شريط ضيق - وتعمل هذه الطريقة في حالة المبيدات ذات الأثر

المتبقي في التربة لفترة طويلة حيث يؤدى استخدام هذه الطريقة إلى خفض

كمية المبيد المضافة.

5- إضافة مبيد الحشائش في مياه الري لمكافحة الحشائش

كما هو الحال في الأرز أو الحشائش المائية في القنوات والترع والمصارف.

Incorporation

6- الخلط الميكانيكي في التربة

يرش المبيد على سطح التربة ثم خلطه فيها باستخدام المحاريث أو الأمشاط في

حدود طبقة سطحية من الأرض لايتجاوز 5-10 سم. وتعمل هذه الطريقة

في حالة المبيدات التي تتطاير أو تتأثر بالضوء مثل الترفلان والإبتام.
خلط المبيدات

من الشائع خلط مبيددين من مبيدات الحشائش معاً لزيادة تأثيرهما على الأنواع المختلفة من الحشائش المنتشرة كما يتم خلط الحشائش أحياناً مع المبيدات الحشرية أو المطهرات الفطرية أو الأسمدة المعدنية المناسبة. يكون تأثير الخلط على فعالية المبيدات Synergistic عندما يؤدي الخلط إلى زيادة التأثير أما حينما يؤدي الخلط إلى انخفاض فعالية المبيدات المخلوطة أو احدها فإن تأثير الخلط في يلاحظ ان خلط أكثر من مبيد بغرض مكافحة antagonistic الحشائش يؤدي إلى استخدام جرعة أقل من هذه المبيدات عن الجرعة المستخدمة في حالة رشها منفرداً بدون خلط مما يؤدي إلى زيادة اختيارية المبيدات لنباتات المحصول بالإضافة إلى تقليل الخطورة الناجمة عن الآثار المتبقية من المبيدات في كل من التربة والنباتات.
سمية المبيدات للانسان والحيوان

يعتبر الكثير من المبيدات المستعملة مثل (الإحماض الكربوكسيلية، اليوريا، أترازينات، أميدات..الخ) بالجرعات الموصى بها مقاومة الحشائش غير ضارة للحيوانات ذات الدم الحار، ومن الدراسات في هذا المجال تفق على حساب سمية المبيدات بالجرعة اللازمة لقتل 50% من الحيوانات المختبرة ومقدرة بالمليمجرام/كيلو جرام من الوزن الحي ويرمز لها بالرمز LD50 ويوجد منها 3 أنواع:

- عن طريق التغذية : LD50
- عن طريق معاملة الجلد : LD50
- عن طريق الاستنشاق : LD50

وتتم المبيدات حسب درجة سميتها إلى:

المجموعة الأولى: قوية جدا في سميتها (LD50 حتى 100 ملليمجرام/كجم)
المجموعة الثانية: قوية السمية (LD50 من 101 - 300 ملليمجرام/كجم)
المجموعة الثالثة: متوسطة السمية (LD50 من 301 - 1000 ملليمجرام/كجم)
المجموعة الرابعة: ضعيفة السمية (LD50 أكثر من 1000 ملليمجرام/كجم)

ويقع عدد كبير من المبيدات الحشائش تحت المجموعة الرابعة، وعدد قليل تحت المجموعة الثالثة، وقليل جدا تحت الثانية، أما المجموعة الأولى فتشمل DNPB و دنوكر وDNOC وDNOPC الأكرولين والمجموعة الثانية الجرامسون والرحلان وDNOC أن بعض المبيدات لا تعتمد على درجة سميتها المنخفضة. فقد عدد من المبيدات كربامات، ثيوكاربات (كماك) يمكن أن تتجمع في الأعضاء الحية وتظهر سميتها فيما بعد.
ويتضح من هذه الدراسات أن معظم مبيدات الحشائش أقل سمية بدرجة كبيرة من المبيدات الحشرية.
وعلى الرغم من أن أغلب مبيدات الحشائش غير سامة للإنسان لكن نسبة قليلة منها سامة جدا وال السم يحدث في الغالب من ابتلاع المبيدات أو امتلاص الجلد لها أو استنشاق الغبار والابخرة ويكون الضرر أكثر حدة عند استعمال المواد المركزية عما في حالة حدوثه من محايل الرش الأقل تركيزا.
وتوجد لبعض الافراد حساسية عالية لنوع معين من الكيماويات و يحدث لهم رد فعل مؤكد وسريع ولذا ينبغي عدم تعرض هؤلاء للمبيدات بقدر الإمكان ويجب غسل الأيدي بالماء والصابون بعد تداولها مباشرة وفي حالة امتلاص المبيدات عن طريق الجلد وظهور رعية خفيفة يجب التأكد من نظافة الملابس الملاصقة للجسم.
وكما يلزم خلعها فورا عند تلوثها للنخلة من آثار المبيدات.
وإذا كانت مبيدات الحشائش المستعملة متطابرة أو تحدث غبارا في ينبغي أن يرتدي كل فرد قناعا واقية وكذا نظارة حافظة للعين، أي أنه من الواجب أن تتبعد كل ما هو موضع في التحذيرات والاحتياطات المكتوبة على العبوات ولاسيما أن هناك بعض المبيدات قد يكون لها خاصية التلوين كصبغة تؤثر على الجلد أو الشعر.
إن لم توفر الوقاية والحماية الكاملة.
وإيضا اغلب مبيدات الحشائش غير سامة للحيوانات بعد رشها على النباتات والمخاطر الرئيسية للقيم تحدث عند لحق الحيوانات لبقايا المبيدات الموجودة في العبوات المفتوحة أو عند نسيان مياه مثيرة، طبقة لطريق التحليل التي بواسطتها أمكن تقدر أدق الآثار المتباقية من مبيدات الاقت في البتين باستثناء منع المواشي بعيدا عن المراعي التي سبق عماملتها بمادة D-2,4-1,1-مبيدات حشائش أخرى من مجموعة الفينوكس لمدة سبعة أيام بعد الرش.
وقليل جداً من مبيدات الحشائش سام جداً للسمك ولكن كثيراً منها يمكن استخدامها بنجاح في مكافحة الحشائش المائية وبدون أن يضر بالمراعي. الطرود السمية وقد يكون من المفيد لتعدد السمك في النهار مكافحة الحشائش المغمورة تحت الماء ويعبر عن التركيز السهولة في المياه من مبيدات الحشائش الذي يمكن استعماله بدون أي ضرر بالجزء من المادة الكيميائية في مليون جزء من الماء ويخفي التركيز بالنسبة لعمر وحجم وتوب سمك.

مبيدات الحشائش والنباتات

الخصائص الاختيارية للمنبهات:

في مجال وفقية النبات يجب أن تكون خاصية السمية الاختيارية من اهم صفات الكيمياويات التي تستعمل في هذا المجال فهي تقتل أحد الكائنات وتجد الأخرى سليماً ومن المعروف أن أكثر المبيدات الزراعية نجاحاً هي التي تمتع بخصائص الاختيارية بطريقة أو أخرى وهي ما اكتشفت بالصدفة أو من خلال تجارب الاختبارات الميدانية للعديد من الكيمياويات.

والمثالي الاختياري لأي مبيد حشائش يجب أن يتم وضع عوامل متعددة ومختلفة في تأثيرها في علاقتها بالخصائص الطبيعية للماضي وبعضها يعتمد على خواصها الكيميائية وتغذيها داخل النبات أو في الورقة، كذلك فإن الصورة التي يضاف بها المبيد إلى سطح الورقة وما إذا اضيف إليه أي من المواد المساعدة أو بعض الزيوت للمساعدة في نشر هذه المادة أو المساعدة على دخولها في النبات.

ويأتي بعد ذلك التركيب المورفولوجي للنباتات ووجه خاص طبيعة سطح النبات لها أهميتها ولكن يتمثل المبيد إلى الأوراق يجب أن يمر هذا المركب الكيميائي خلال الغزور أو خلال طبقة الكونتيكل، وهذه الطبقة شديدة التعقيد من

81
ناحية تركيبها الكيماوي، ويختلف تكوينها من نوع من النباتات إلى آخر، ولكن خواصها مهمة لأنها تكون الحاجز الذي يجب على أيونات أو جزيئات المبيد أن تجتازه.

لذا فإن الخواص الطبيعية لجزيئات المبيد مثل قابلليته للذوبان في الماء أو في الدهون هي من العوامل الهامة التي تحدد ما إذا كان هذا المبيد سيستطيح التخلل إلى الأنسجة، وبصفة عامة فإنها كانت المادة شديدة القطبية (أي لها قابلية شديدة للماء والمواد القطبية) فإن تستطيع المرور بسهولة خلال طبقة الكيتيكيل.

ومن ناحية أخرى فإنها كان عديم القطبية من الكيتيكيل ولا تتحرجها، وهناك بعض الخواص الكيميائية التي قد تظهر أثناء امتصاص أو دخول المبيد، فمثلا هل يحدث له تحلل؟ فمن المعروف أن طبقة الكيتيكيل تحتوى على بعض المجاميع الحامضية الضعيفة التي عند تأينها فإنها تعوق مرور الأنيونات وبمجرد دخول المبيد إلى النبات فإن هناك واقع site of action ومثال ذلك المجمعات الأمينية الموجودة في بروتينات الأغشية البروتوبلازمية مما يعيق تحرك المركبات العضوية ذات الأنيونات ونظرًا لأن هذه الأغشية تحتوى على مجاميع (محبة للماء) بالإضافة إلى المجاميع hydrophilic فإن الانزكان بين سلوك المبيد بالنسبة للمجاميع المذكورة سابقا له أهمية في تخلل المبيد.

ومن القواعد العامة أن الصفات الطبيعية لمبيد الحشائش لا تتغير وتفوز كما هي، وفي الوقت نفسه فإن تركيب وصفات الأنسجة النباتات تختلف اختلافًا بينًا من نوع إلى آخر مما يسبب في اختلافات واضحة في امتصاص مثل هذه المبيدات ودخولها إلى النبات. وتكون حركة المبيد الذي تم رشها أو المعاملة بـه على
الموضوع الخضرى خلال أوعية الإلهاة ذات الأنسجة الحية، وتتبع نفس الطريق الذي تسلكه المواد الغذائية ونواتج عملية التمثيل الضوئي وتتجه المبيدات المرشوشة على التربة في الاتجاه إلى أعماق أوعية الخشب وهي أنسجة غير حية وتتأثر حركة المبيد داخل النبات بالعوامل التي تؤثر على نمو النباتات وحركة المواد العضوية وغير العضوية السائلة والماء والمعادن. وبصفة عامة فإن قدرة النباتات على التفرقة في امتصاص الماء أقل عن طريق الجذور منها عن طريق القدم النامية وهذا سبب أن الجذور تمتص أي مبيد يضاف إلى التربة بدون أن تميز.
وعند تحرق المبيد داخل النبات قد تجري عليه عمليات تحلل أو هدم بمجرد ملامسته للسطح الخارجي للجذر ثم خلال الإباضة والقشرة إلى الخشب ثم إلى أعلا قمة النبات. وأي مبيد يدخل النبات هو في الحقيقة مادة غريبة يجب التعامل معها، وتتوقف مصير هذا المبيد داخل أنسجة النبات على صفاته الطبيعية والكيميائية، وسواء وصل المبيد إلى مكان أظهار تأثيره السام كما هو أو في صورة مختلفة نتيجة لتحليله أو تحويله إلى مادة جديدة سواء أكثر سمية أو عديمة السمية فإن العديد من العوامل تحدد التأثير الاختياري النهائي لمبيد الحشائش وهذه العوامل مثل التربة - التركيب المورفولوجي - الانتقال - العوامل الفسيولوجية والبيوكيميائية وذلك عن طريق التأثير على تركيز المبيد الذي يصل إلى مكانه الفعال في أي وقت، وتشكل العوامل أو الحواجز الآتية مدى القدرة الاختيارية للمبيد - التحلل - الإحتفاظ بمادة الرش - التطور على سطح الأوراق أو سطح التربة - الأمتصاص على حبيبات التربة - وكذلك تأثير ميكروبات التربة وكذلك العوائق المورفولوجية أو الفسيولوجية - وتشمل العوائق (الحواف) البيوكيميائية تنشيط أو ضياع السمية أو تحطيم المبيد المرشوش.